

Sex-Linkage \& Pedigrees

Sex Linkage

-A person's sex is determined by the presence of sex chromosomes
-Humans have 44 "autosomes" and 2 "sex" chromosomes

- Males are heterozygous XY
- Females are homozygous XX
-Presence of Y indicates maleness rather than the absence of X
-A gene on the X of a male has no matching allele on the Y

Sex Linkage Explained Further

- Traits found on the X chromosome are commonly referred to as X-linked or Sex-Linked Each allele of each sex chromosome is written as a superscript
Examples of X-Linked Genes:
- Hemophilia
- Muscular dystrophy
- Red/green colourblindness
- Early patterned baldness

Take a Look...

Hemophilia: A Royal Curse

- Blood clotting

- Normal blood clotting is dominant to hemophilia
- The gene for blood clotting in on the X chromosome

Hemophilia Discovered

- Let ${ }^{H} X=$ the hemophilia on the X chromosome
- Let Y represent the Y chromosome
- Cross a heterozygous female with a normal blood clotting male
- HXX cross ${ }^{\text {H}} \mathrm{XY}$
- The Y factor
- Males CANNOT pass on anXlinked trait to a son because he MUST pass on the Y to him

Vision Test

- 8% of men, 0.04% of women
- Three genes give us our colour vision
Blue, Red, and Green
- Blue is found on an autosome
- Red and green are found on the X chromosome
- 1. Normal Color Vision:

A: 29, B: 45, C: --, D: 26

- 2. Red-Green Color-Blind:

A: 70, B: --, C: 5, D: --

- 3. Red Color-blind:

A: 70, B: --, C: 5, D: 6

- 4. Green Color-Blind:

A: 70, B: --, C:5, D: 2

Red/Green Colour Blindness

- Defective red allele
- If the red defective allele is passed but green allele is normal
- the person can't tell the difference between red and green
- Defective green allele
- Same effect if the green defective allele is passed on and the red is normal

Pedigree Charts

- Pedigree charts show a record of the family of an individual
- They can be used to study the transmission of a hereditary condition
- They are particularly useful when there are large families and a good family record over several generations.

A mating with five children, two daughters and three sons. The middle son is affected by the condition.

Eldest child \rightarrow Youngest child

$\square \quad$ Normal male Affected male Normal female Affected female Mating

Organizing Pedigree Charts

- A pedigree chart of a family showing 20 individuals
- Individuals in each generation are identified by Roman numerals numbered from the left
- Therefore the affected individuals are II3, IV2 and IV3

