

Newton's Three Laws of Motions apply to sports?

What are Newton's Three Law of Motion?

Newton'S $1^{\text {st }}$ Law of Motion

- An object at rest will stay at rest, unless an outside force is placed on it.
\rightarrow Commonly known as Inertia

How does Newton's $1^{\text {st }}$ Law apply to sports?

Sport examples:

- Statics - athlete/object is motionless
- Olympic lifter
- Diver before a dive
- Gymnast after the landing
- Dynamics athlete/object is in motion.
- Cyclist coasting at a constant velocity
- Skier coasting at a constant velocity

Newton's $2^{\text {nd }}$ Law of Motion

- Is the most complicated of the laws
- The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
- The change of motion of an object is proportional to the force impressed; and is made in the direction of the straight line in which the force is impressed.

Newton's 2nd Law of Motion

- Formula
$\rightarrow \mathrm{F}=\mathrm{ma}$
- F = Force (1N)
- $11 \mathrm{~b}=4.5 \mathrm{~N}$
- m = mass (kg)
- $1 \mathrm{~kg}=2.2 \mathrm{lbs}$
- Weight = mass x acceleration of gravity
- $\mathrm{W}=\mathrm{mg}$
- $\mathrm{W}=1 \mathrm{~kg} \mathrm{x}(9.8 \mathrm{~m} / \mathrm{s} 2)=9.8 \mathrm{~N}$
- a = acceleration of gravity
- $9.8 \mathrm{~m} / \mathrm{s} 2$ or $32.2 \mathrm{ft} / \mathrm{s} 2$

Newton's ${ }^{2 n d}$ Law of Motion

- What is a Force?
- A vector defined by the size and direction
$\rightarrow \mathrm{A} \rightarrow$ to the right $(+)$ or $\mathrm{a} \leftarrow$ left $(-)$. The length $=$ the force. The longer the line the greater the force, and vice versa on shorter
- The same for the Up $\uparrow(+)$ and the down $\downarrow(-)$ arrow.
- There are different types of force:
- Tensile Force (Pulling a rope)
\rightarrow Compressive Force (Pushing together)
\rightarrow Non contact forces - Gravity, magnetic forces, electricity

Newton's 2 $^{\text {nd }}$ Law of Motion

- Net Force = the sum of all external forces acting on an object.
- $\quad \Sigma \mathrm{F}=\mathrm{F} 1+\mathrm{F} 2+\mathrm{F} 3+\ldots .$.
- Statics - Bodies at rest equal zero
- $\quad \Sigma \mathbf{F}=0$
- Collinear forces - in the same line, maybe in the same or opposite direction and may be added to determine resultant force.
- Example:
- Tug-of - War Team 1 has 3 members exerting the following forces: 100N, $200 \mathrm{~N}, 400 \mathrm{~N}$ and team 2 has 3 members exerting the following forces: 200 N , 300N, 500 N ; who will win?

How does Newton's $2^{\text {nd }}$ Law apply to sports?

\rightarrow Pitching a baseball
\rightarrow How fast is the ball moving?
\rightarrow Weightlifting
\rightarrow How much force do I need to lift this weight?
\rightarrow Track and Field
\rightarrow How fast is that person running?
\rightarrow How much force is needed to throw the shot-put 50 feet?

Newton's $3^{\text {rd }}$ Law of Motion
\star For every action, there is an equal and opposite reaction. \rightarrow Action equals Reaction

How does Newton's $3^{\text {rd }}$ Law apply to sports?

Kicking a Football

All sports use one of Newton's laws

0 Baseball

- Football
- Basketball
- Track
- Gymnastics
- All Sports use Newton's Laws

