Mechanics of Breathing

Hemoglobin And Gas Transport

Hemoglobin (carrier protein) binds 02.
This creates a diffusion gradient since the concentration of O 2 is lower in plasma than in the alveolus.

- Hb is composed of four polypeptide subunits containing iron that binds 02
- Hemoglobin is red but much redder when oxygen is attached

Hemoglobin

Hemoglobin

- When red blood cells carrying oxygen reach the tissues of the body, the presence of CO_{2} makes the hemoglobin molecule change shape and give up oxygen
- Hemoglobin will then pick up some of the CO_{2}. The rest of the CO_{2} is carried in the cytoplasm of red blood cells that go to the lungs
- CO_{2} combines with water in the cytoplasm to make carbonic acid.
- The rbc's release the CO_{2} and the CO_{2} moves across the walls of capillaries and into the alveoli where it will eventually be exhaled

Breathing

- Inspiration: the act of taking air INTO the lungs, occurs when pressure inside the lungs is LOWER than pressure outside the lungs (i.e. atmospheric pressure)
- Expiration: the act of breathing OUT, occurs when pressure inside the lungs is GREATER than pressure outside the lungs (atmospheric)

Breathing Movements

- The body uses muscles to change the VOLUME of the thoracic cavity.
- This alters the PRESSURE inside the lungs
- An increase in volume = decrease in pressure (and vice versa)

Respiratory Muscles

- Diaphragm: dome shaped sheet of muscle separating thoracic and abdominal cavities.
- Intercostal muscles: muscles of the ribcage
- External intercostals: outer surface, pull ribs up
- Internal intercostals: inner surface, pull ribs down

Mechanics of INSPIRATION

- Diaphragm CONTRACTS and FLATTENS (moves downwards)
- Intercostals CONTRACT and move ribcage UPWARDS
- Pleural membrane pulls on lungs
- Result:
- Lung volume:

INCREASED

- Pressure inside the lungs:

DECREASED

- AIR MOVES IN

Mechanics of EXPIRATION

- Diaphragm RELAXES and RETURNS to DOME shape
- Intercostals RELAX and move ribcage DOWNWARDS
- Pleural Membrane no longer pulling on lungs
- Result:
- Lung volume: DECREASED
- Pressure inside the lungs: INCREASES
- AIR MOVES OUT
- *Internal intercostals can pull ribs in further to force exhalation

Respiration and Gas Exchange

- Once inside the lungs, air is exchanged with the gases in the bloodstream.
- External Respiration: The exchange of O_{2} and CO_{2} between air and blood (occurs in the lungs).
- The alveoli are surrounded by tiny blood vessels (capillaries); both have walls that are only a single cell layer thick to allow for diffusion of gases.

Respiration and Gas Exchange

- the gases are exchanged due to differences in CONCENTRATION.
- O_{2} in inhaled air $>\mathrm{O}_{2}$ in blood of capillaries in lungs.
- CO_{2} in inhaled air $<\mathrm{CO}_{2}$ in blood of capillaries in lungs.
- So in external respiration,
- O_{2} diffuses from the alveoli to the capillaries and
- CO_{2} diffuses from the capillaries to the alveoli.

Respiration and Gas Exchange

- Once in the bloodstream, oxygen travels throughout the body.
- Internal Respiration: The exchange of O_{2} and CO_{2} between blood and the cells of the surrounding tissue (occurs in the body tissues).
- As is passes body cells O_{2} diffuses from the capillaries to the tissue and CO_{2} diffuses from the tissue to the capillaries.

Gas Exchange Across Alveoli and Capillaries

- When red blood cells carrying oxygen reach the tissues of the body, the presence of CO_{2} makes the hemoglobin molecule change shape and give up oxygen

Cellular Respiration

- Organisms use oxygen for cellular respiration to obtain energy from glucose
- glucose + oxygen ---> carbon dioxide + water + useable energy
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+\mathrm{O}_{2} \quad----->\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}+$ useable energy
- Partial pressure of oxygen $\left(\mathrm{P}_{\mathrm{o} 2}\right)$ in the alveoli is higher ($\sim 13.3 \mathrm{kPa}$) than the blood in the capillaries surrounding the alveoli (~ 5.33 $\mathrm{kPa})$. This is a high enough pressure difference to cause O 2 to diffuse from the air in the alveoli into the PLASMA of the blood.
- Oxygen is transported two ways: attached to Hb (98.5 \%) and dissolved in the blood plasma (1.5\%).

Oxygen vs. Carbon Dioxide

- Hb inc the blood's 02 carrying capacity by ~70 times.
- When O 2 containing rbc's reach tissues, O 2 in plasma diffuses $1^{\text {st }}$ causing O 2 molecules attached to Hb to separate and diffuse $1^{\text {st }}$ into the plasma and then $2^{\text {nd }}$ into the tissue cells.
- Normally the $\mathrm{P}_{\mathrm{CO} 2}$ of tissue fluid is 5.60 kPa which is higher than in capillaries ($\sim 5.33 \mathrm{kPa}$).
- CO2 is transported 3 ways:

1. $\sim 7 \%$ remains dissolved in the plasma
2. $\boldsymbol{\sim} \mathbf{2 0 \%}$ attaches to hemoglobin to form carlbaminohemoglobin.
3.

~73\% reacts with water in plasma to form carbonic acid that quickly dissociates into HCO3- ions and H+ ions.

The H+ ion dilemma

- Too many $\mathrm{H}+$ ions = too much acidity in the blood
- Hb to the rescue!! As Hb releases O_{2} into tissue cells, it attaches H^{+}ions and thus dec. acidity.
- HCO_{3} - remain dissolved in plasma until the lungs where they react with H^{+}ions to re-form CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. Then this CO 2 mixes with the CO 2 carried in dissolved form in the blood plasma.
- Thus, the $\mathrm{P}_{\mathrm{CO} 2}$ of the capillary blood is $\sim 5.60 \mathrm{kPa}$ and the $\mathrm{P}_{\mathrm{CO} 2}$ of the air is $\sim 5.33 \mathrm{kPa}$ causing the diffusion of CO 2 out of the lungs.

Body tissue
 Blood capillary

uic.edu

Mechanics Of Breathing

Breathing

- PLEURA is a slippery membrane with two layers.

O the outer pleura is attached to the chest wall
O the inner pleura covers the lungs
O between those layers is fluid that lubricates and reduces friction when lungs move against ribs. As the ribs (chest) expands so do the lungs.

Pleurisy: Inflammation of the pleural membranes and the build up of fluids in the chest cavity (caused by the two membranes rubbing together).

- This inc pressure makes exhalation easier but inhalation more difficult.
- Pneumothorax: collasped lung from pleurisy

Ventilation

- DIAPHRAGM

O a muscular sheet that consists of 3 overlapping groups of muscle fibers
O forms the floor of the chest and separates it from the abdomen
O relaxed, it is dome shaped and it bulges up into the chest
O contracted, it is flat and the chest is larger

Lung Capacities

- The full capacity of your lungs is not used up under normal conditions consider yawning, or blowing out a candle, or exercising.
- A spirometer is used to measure lung capacities and produces a spirograph

Lung Capacities

- Tidal Volume: volume of air inhaled and exhaled in a normal breathing movement

Lung Capacities

- Inspiratory Reserve Volume: the additional volume of air that can be taken in, beyond a regular or tidal inhalation.
- Inspiratory Capacity: total volume of air that can be taken in
- (TV + IRV)

Lung Capacities

- Expiratory Reserve Volume: the additional volume that can be forced out of lungs
- Vital Capacity: the total volume of gas that can be moved in or out of the lungs
- TV + IRV + ERV = VC

Lung Capacities

- Residual Volume: the amount of gas that remains in the lungs and passageways of the respiratory system even after full exhalation (prevents collapse, no value for gas exchange)

