Linear Motion Practice Questions

$a=v / t \quad a=v 2-v 1 / t \quad F=m a \quad Q=F t \quad M=m v$

Velocity and Acceleration Practice

1. A skater goes from a standstill to a speed of $6.7 \mathrm{~m} / \mathrm{s}$ in 12 seconds. What is the acceleration of the skater?
2. As a sprinter comes to a normal stop, they slows from $9.00 \mathrm{~m} / \mathrm{s}$ to $0.00 \mathrm{~m} / \mathrm{s}$ in 5.00 s . Find the acceleration of the sprinter.
3. During a race, a sprinter increases from $5.0 \mathrm{~m} / \mathrm{s}$ to $7.5 \mathrm{~m} / \mathrm{s}$ over a period of 1.25 s . What is the sprinter's average acceleration during this period?
4. A wheel chair athlete starts from rest and accelerates at a constant rate of $1.500 \mathrm{~m} / \mathrm{s}^{2}$. What is the speed of the athlete after it they have traveled for 4.75 seconds?

Linear motion

1. How much force would be applied to a quarter back if a linebacker with a mass of 100 kg is accelerating at $5 \mathrm{~m} / \mathrm{s}^{2}$ hits them?
2. What would the acceleration of Usain Bolt be if he applies 500 N of force and has a mass of 80Kg?
3. a) Lineman J.J. Watt weighs 110 kg and can move at a velocity of $8.2 \mathrm{~m} / \mathrm{s}$.

What is his momentum?
b) What is running back Adrian Peterson's momentum if he weighs 98 kg and travels at a velocity of $9.3 \mathrm{~m} / \mathrm{s}$?
c) Upon impact, who would continue forward?
4. Aaron Judge (95 kg) is rounding the bases traveling 10 m in 1.4 s when he collides with shortstop Devin Travis (88 kg), who is fielding a grounder, covering 10 m in 1.3s. Who will continue forward?
5. In bumper cars, Car A has a mass of 200 kg and a speed of $18 \mathrm{~m} / \mathrm{s}$. Car B has a mass of 170 kg. How fast must Car B go in order to bump Car A back?
6. During a high-stakes shuffleboard match, Randy pushes the shuffleboard rock (?) with a force of 20 N for 1.1 s , while Tony pushes with a force of 25 N for only 0.9 s . Whose shuffleboard rock will travel the farthest? (assuming the rocks have equal mass)

