LINEAR MOTION

Recall Newton's 3 Laws

Recall the Kinematic Variables

KINEMATIC VARIABLES (units)

Time

Displacement
Velocity
Acceleration

Angular displacement
Angular velocity
Angular acceleration

3 TYPES OF MOTION:

A) LINEAR - Centre of gravity (CofG) travels in a straight line ex. gliding on skates

Also ‘Curvilinear’ - CofG travels in a curved line (parabolic path) ex. a ball flying through the air (or a long-jumper)

*BOTH are produced by applying a force directly THROUGH the_CofG
B) ANGULAR - when an object or body rotates about an axis ex. figure skating spin, gymnast rotating around the high bar, karate chop
*produced by applying a force ('torque') at a point AWAY from the Centre of Gravity
C) GENERAL - a combination of the two (C. of G. moves in a straight line, but arms \& legs are rotating) ex. running ex. wrestling

Figure 7.6 Causes of linear and angular motions. A. Linear motion results when the forces are applied throunh the centre of mass R Ancular motion results when forces are annlied awav from the centre of

IMPULSE

What is 'IMPULSE'? - the application of Force over a period of Time IMPULSE (Q) = FORCE X TIME

Principle 4 states: The greater the IMPULSE the greater the acceleration

Ex. Hitting a baseball

IMPULSE

Application for sports: an athlete who moves joints through a larger 'Range of Motion' is able to apply force for a longer period of time. Ex's: baseball swing, discus throw

Force and Acceleration

Recall Newton's 2nd Law: Force is proportional to acceleration ...provided mass is constant

In other words: $\mathbf{F} \boldsymbol{\alpha} \mathbf{a}$ and therefore $\mathrm{F}=\mathrm{mxa}$
Ex. Given an equal application of Force...
if mass is greater, acceleration is less

$$
F=\prod^{x} \text { a }
$$

if mass is lighter, acceleration is greater

$$
F=m \times \mathbf{a}
$$

DIRECTION OF FORCE

"Movement usually occurs in the direction opposite that of the Force applied"
(relates to Newton's 3rd Law: equal \& opposite)
Ex. Starting blocks

Momentum (M)

'Momentum' - is the amount of 'motion' that an athlete or object has developed. it is a factor of mass and velocity
(i.e. a very heavy object that is moving fast very hard to stop!)

MOMENTUM = mass x velocity

$$
M=m \times v \quad(k g \cdot \mathrm{~m} / \mathrm{s})
$$

Momentum (cont'd)

Ex. A skier weighs 70 kg and is traveling $30 \mathrm{~m} / \mathrm{s}$. What is her momentum?

$$
M=m \times v \quad M=70 \times 30=2100 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}
$$

Implication for sports: momentum plays a key role during 'impact' situations. The outcome of the impact depends largely on the momentum of each of the bodies involved (*ignoring STABILITY factors) $^{\text {S }}$

Ex. football tackle

