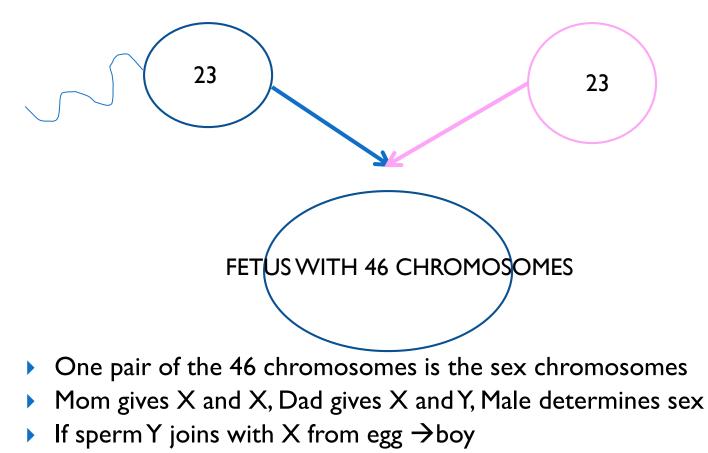
HEREDITY

VOCABULARY PART II:

- Phenotype
 - Observable characteristics or traits
- Genotype
 - Gene makeup
 - Capital letters represent dominant genes and lowercase represent recessive genes
- Pure bred
 - Offspring that are identical to their parents
- Hybrid
 - Mixture of two pure breeds
- P generation
 - Parent generation


VOCABULARY PART II CONTINUED:

- F₁ generation
 - Filial generation I, offspring of the parents (P generation)
- ▶ F₂ generation
 - Filial generation 2, offspring of the F₁ generation
- Dominant
 - Traits that dominate over other traits and are expressed
- Recessive
 - Traits that are not expressed
- Phenotypic Ratio
 - Ratio of phenotypes in an offspring.
 - Ex. 3 tall plants for every I dwarf plant has a ratio of 3:1
- Genotypic Ratio
 - Ratio of genotypes in offspring
 - Ex. I tall plant, 2 tall/dwarf, I dwarf (1:2:1)

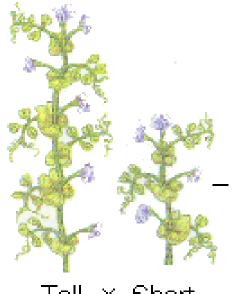
BACKGROUND:

- Genetics is the study of how traits are passed from parent to child through genes and chromosomes
- Sperm and egg: 23 chromosomes
- All other cells: 46 chromosomes

FERTILIZATION AND SEX DETERMINATION:

• If sperm X joins with X from egg \rightarrow girl

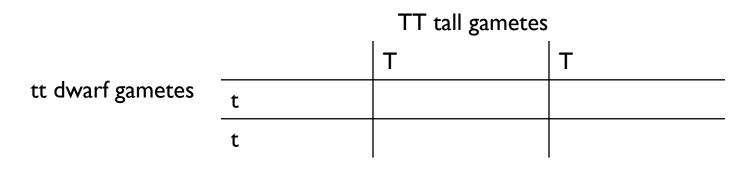
GENES

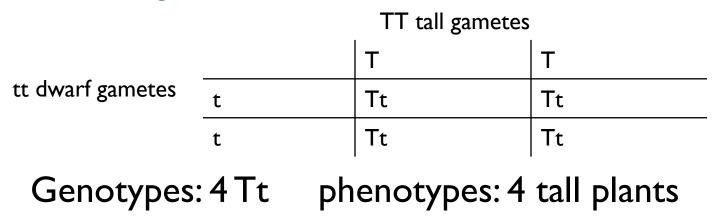

- Each chromosome carries many genes
- Some traits have one gene (ie. blood type)
- Some traits are the result of pairs of genes together:
 - Ex. Hair colour, eye colour, height
- Genes can either be dominant or recessive
 - Dominant: cancels out trait carried by recessive gene
 - Ex. Brown eye colour is dominant over blue
 - Recessive: for trait to appear must get recessive gene from BOTH parents
 - Ex. Both parents have blue eyes \rightarrow child will have blue eyes

PUNNETT SQUARES:

- Used to illustrate the possible outcomes (offspring) of a mating or cross
- Steps to construct a Punnett Square:
 - I. Determine parental genotypes
 - 2. Determine the possible genotypes of the gametes of each parent
 - 3. Write these genotypes in the exterior of the squares
 - 4. Fill in the interior and interpret the genotype and phenotype of the next generation
- Same genes (tt): homozygous
- Different genes (Tt): heterozygous

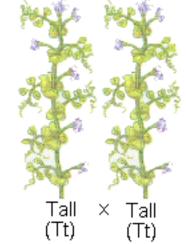
EXAMPLE:

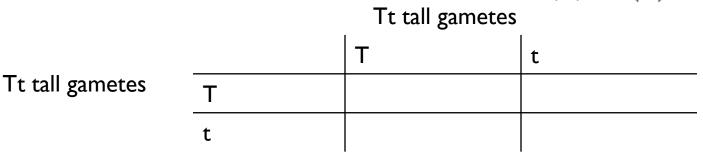

- Consider the cross between a purebred tall plant (TT) and a purebred dwarf plant (tt)
 - I. Determine parental genotypes
 - TT tall and tt dwarf
 - 2. Determine the possible genotypes of the gametes of each parent
 - Tall can only have T gametes, dwarf can only have t gametes


Tall × Short (TT) (tt)

EXAMPLE CONTINUED:

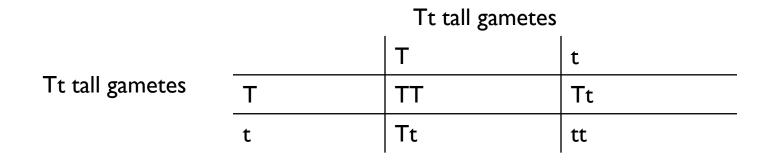
3. Write these genotypes in the exterior of the squares


4. Fill in the interior and interpret the genotype and phenotype of the next generation



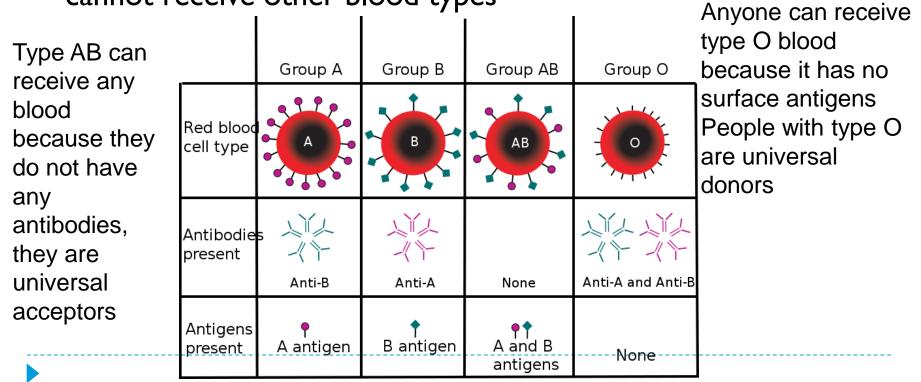
EXAMPLE 2:

- Consider the cross of 2 F1 plants from the last cross
- I. Parental genotypes:
 - Tt and Tt
- 2. Gametes:


- T (tall) or t (dwarf) for both parents
- 3. Fill in the table:

EXAMPLE 2 CONTINUED:

4. Complete the cross:


Genotypic ratio: I TT: 2 Tt: I tt

Phenotypic ratio: 3 tall plants: I dwarf plant

BLOOD TYPES:

- There are 4 different blood types: A, B, AB, and O
- Blood type is based on the antigens or surface molecules present on your red blood cells
- Have antibodies against other blood types (except O) so you cannot receive other blood types

BLOOD TYPES CONTINUED

- A, B, AB, and O are the phenotypes
- The genotypes are as follows:
 - Blood type A:
 - Either I^AI^A or I^Ai^O
 - Therefore, because the phenotype is A, A is dominant over O
 - Blood type B:
 - Either I^BI^B or I^Bi^O
 - Therefore, because the phenotype is B, B is dominant over O
 - Blood type O:
 - ▸ Only i^Oi^O
 - Type O is recessive so you must have 2 copies of the O gene
 - Blood type AB:
 - Only I^AI^B

These are equally expressed so we call this co-dominance

BLOOD TYPES CONTINUED

- Blood types are either or + due to the presence or absence of an "Rh factor"
- Rh factor is a surface molecule on red blood cells
 - + : have Rh factor
 - : don't have Rh factor
- Mothers that are can create antibodies against + babies if their blood mixes
 - Antibodies will kill off babies blood cells
 - Mothers are given medication to suppress this immune response