Responses to Exercise IN THE HEART

Cardiac Output (Q)

- Cardiac Output (Q) - the volume of blood that is pumped out of the left ventricle in l minute
- Measured in L/min
- Typical person = 5-6L/min
- During heavy exercise = around 30L/min
- Two other factors that contribute to cardiac output (Q) are stroke volume and heart rate

1. Cardiac output - the volume of blood pumped from each ventricle per minute:

$\mathrm{CO}=\mathrm{SV} \quad \mathrm{H} \quad \mathrm{HR}$

cardiac output $=$ stroke volume X heart rate
($\mathrm{ml} / \mathrm{minute}$) ($\mathrm{ml} / \mathrm{beat}$) (beats $/ \mathrm{min}$)
a. Average heart rate $=70 \mathrm{bpm}$
b. Average stroke volume $=70-80 \mathrm{ml} /$ beat
c. Average cardiac output $=5,500 \mathrm{ml} /$ minute

Stroke Volume

- Amount of blood that is ejected from the left Ventricle in a single beat - Measured in millilitres

A Simple Model of Stroke Volume

SV =

Cardiac Output

Heart Rate

To increase cardiac output

Increase stroke volume or

Increase heart rate or
increase both

How to Change Stroke Volume

Starling's law of the heart: What goes in, comes out

Copyright (c) 2011, 2007 by Saunders,
an imprint of Elsevier Inc. All rights

STROKE VOLUME

- SV is calculated by subtracting the left ventricular end-systolic volume (LVESV) from the left ventricular end-diastolic volume (LVEDV)
- SV(ML) = LVEDV (ML) - LVESV (ML)

$$
\begin{aligned}
& \text { Whai's the difference in SV } \\
& \text { between trained and untrained } \\
& \text { Individuals? }
\end{aligned}
$$

Stroke Volume Trained Vs Untrained

- Trained individuals have a larger SV than untrained as you can see from the graph!

Heart Rate

- Number of times the heart contracts in a minute
- Beats per minute
- Cardiac output can be calculated as the product of stroke Volume and heart rait:
- Q = SV X HR

Effects of Training

- Most influential changes with aerobic training are alieraitions in the structure of the heart
- Increases in mass and dimensions of the heart are Observed
- Specifically: ventricular volume and thickness Of VENTRICLE WALLS

Other Effects

- Increase in \# of capillaries
- Due to increased oxygen demand
- Increase in volume of blood
- Due to increased oxygen demand
- If training stops, volume will return to pre-training level
- Bradycardia - LOWER HR (60 bpm or less at rest)
- Tachycardia - HR of 100 BPM OR higher at rest

Cardiovascular Disease

- Atherosclerosis - gradual narrowing of the coronary ARTERIES
- DUE TO ACCUMULATION OF HARD DEPOSTIS OF CHOLESTEROL ON THE LINING OF THE VESSELS
- If vessel becomes blocked or partily blocked myocardial infarction (heart attack) would occur
- RIsk factors: Smoking, high blood pressure, family history, Lack of physical activity

