ANGULAR MOTION

ANGULAR MOTION

UNITS OF MEASURE:

angular velocity $(\omega)-\mathbf{0} / \mathbf{s}$ (degrees/second)
like velocity (v) - m / s
angular acceleration (α) - $\mathbf{0} / \mathbf{s}^{\mathbf{2}}$
like acceleration (a) - $\mathrm{m} / \mathrm{s}^{2}$

NEWTON'S 3 LAWS APPLIED TO ‘ANGULAR MOTION’

EQUAL AND OPPOSITE LAW:

"For every TORQUE that is exerted by one body onto another, there is an equal and opposite TORQUE exerted as well."

TORQUE - force causing angular motion (Newtons)

Ex. Sitting on a spinning chair: swinging your arms horizontally in one direction, will make you....

NEWTON'S LAW OF EQUAL \& OPPOSITE TORQUE APPLIED TO SPORTS

Effective application of the action-reaction principle is also made in throwing and kicking. In handball, for example, the throwing action is carried out by moving the shoulder forward along with the throwing arm - action. To prevent the whole body from twisting, which is important for good throwing accuracy, the athlete twists the hips forward in the opposite direction - reaction. This also engages the powerful trunk muscles, which significantly increases the power of the throw.

NEWTON'S 3 LAWS APPLIED TO ‘ANGULAR MOTION’

FORCE AND ACCELERATION LAW:

"The angular acceleration of an object is proportional to, and in the same direction as the 'TORQUE' which is applied to it."
again...TORQUE = force causing angular motion

Recall: $\mathrm{F}=\mathrm{mxa}$ In angular world there's a little more to it...

Which skater is spinning faster?

NEWTON'S 3 LAWS APPLIED TO ‘ANGULAR MOTION’

Linear motion: Angular Motion:

$$
F=m \times a \quad T=I \times \alpha
$$

TORQUE = 'Moment of Inertia' \mathbf{x} angular acceleration
If mass (\mathbf{m}) is what makes an object hard to push.... it is 'Moment of Inertia' (I) that makes an object hard to spin

MOMENT OF INERTIA - "that characteristic of an object which makes it reluctant to change its angular motion"

- a factor of the object's mass and radius

$$
\mathbf{I}=m \times r^{2}
$$

Example....spinning on a chair - arms in / arms out

- does mass change? does radius?

IMPORTANT: in the formula $\mathbf{I}=\mathbf{m} \times \mathbf{r}^{\mathbf{2}}$

...why is radius squared?
...because RADIUS MATTERS MORE!!!

- if you increase the mass of an object, it requires more Torque to spin it,
- but if you increase its radius, it requires A LOT more Torque to spin it!!!

$$
T=I \times \alpha
$$

or...

$$
\mathrm{T}=\mathrm{m} \times \mathrm{r}^{2} \times \alpha
$$

For example: a baseball bat

If ygu tried to swing a heavier bat, it would be hard to swing
$T_{T=1}=\max _{\times \times \times \times}$
But if you tried to swing a longer bat (even if it was the same mass), it would be waaaaaay harder to swing!

Newton's Force - acceleration law APPLIED TO ‘ANGULAR MOTION’

Ex: If it takes 20 N of Torque to spin a regular bat, how much Torque would it require to spin...
a. a bat that is twice as heavy?

$$
\begin{aligned}
T & =m \times r^{2} \times \alpha \\
2 x \Longrightarrow T & =2 \times m \times r^{2} \times \alpha \\
T & =2 \times 20 \mathrm{~N}=40 \mathrm{~N}
\end{aligned}
$$

b. a bat that is twice as long? (twice the radius)

$$
\begin{aligned}
T & =m \times 2 r^{2} \times \alpha \\
4 \times T & =m \times 4 r \times \alpha
\end{aligned} T=4 \times 20 N=80 N
$$

or, try that same question with real numbers...

How much Torque would it take to swing a bat that weighs...
a) 2 kg and has a radius of 0.7 m ?
b) 4 kg and has a radius of 0.7 m ?
c) 2 kg and has a radius of 1.4 m ?

Answers:
a) 0.98 N
b) 1.96 N (twice as much Torque required)
c) 3.92 N (4 times as much Torque required)

NEWTON'S 3 LAWS APPLIED TO ‘ANGULAR MOTION'

LAW OF INERTIA:

"A rotating object will continue to spin with constant
angular momentum, unless an external force acts upon it."
Recall:

Momentum: Angular Momentum (H):

$$
M=m \times v
$$

ω

(Moment of Inertia)

*Important concept: In free-fall Angular Momentum (H) is held CONSTANT. It does not change (see Law of Inertia).
Likewise, in all future spinning examples H will be assumed to be constant, (ie. we are ignoring forces like friction, air resistance, etc.) In other words: $H_{\text {initial }}=H_{\text {final }}$

The LAW of inertia (CONT'D)

Therefore, if an object is spinning... any decrease in Moment of Inertia (mass or radius) will result in an increase in angular velocity (ω) BECAUSE H IS CONSTANT!!!

$$
H=\underline{m} \times r^{2} \times \omega \quad \text { and vice versa }
$$

Example: A diver is doing a layout, then pikes herself into $1 / 2$ her original length (aka radius). How will her angular velocity be affected?

$$
\begin{aligned}
& H=\underline{m \times r^{2}} \times \omega \\
& H=\underline{m x} \underline{r}^{2} \times \omega \omega \\
& H=\underline{m \times 1 / 2 r^{2}} \times \underline{\omega}
\end{aligned}
$$

$\left(\mathrm{H}\right.$ is constant) $\mathrm{H}_{\text {initial }}=$ $H_{\text {final }}$

Therefore, her angular velocity will be 4 times greater if she pikes to

$$
H=m \times 1 / 4 \times 4 \omega
$$ $1 / 2$ her original radius.

